Single-scan dual-tracer FLT+FDG PET tumor characterization.
نویسندگان
چکیده
Rapid multi-tracer PET aims to image two or more tracers in a single scan, simultaneously characterizing multiple aspects of physiology and function without the need for repeat imaging visits. Using dynamic imaging with staggered injections, constraints on the kinetic behavior of each tracer are applied to recover individual-tracer measures from the multi-tracer PET signal. The ability to rapidly and reliably image both (18)F-fluorodeoxyglucose (FDG) and (18)F-fluorothymidine (FLT) would provide complementary measures of tumor metabolism and proliferative activity, with important applications in guiding oncologic treatment decisions and assessing response. However, this tracer combination presents one of the most challenging dual-tracer signal-separation problems--both tracers have the same radioactive half-life, and the injection delay is short relative to the half-life and tracer kinetics. This work investigates techniques for single-scan dual-tracer FLT+FDG PET tumor imaging, characterizing the performance of recovering static and dynamic imaging measures for each tracer from dual-tracer datasets. Simulation studies were performed to characterize dual-tracer signal-separation performance for imaging protocols with both injection orders and injection delays of 10-60 min. Better performance was observed when FLT was administered first, and longer delays before administration of FDG provided more robust signal-separation and recovery of the single-tracer imaging measures. An injection delay of 30 min led to good recovery (R > 0.96) of static image values (e.g. SUV), K(net), and K(1) as compared to values from separate, single-tracer time-activity curves. Recovery of higher order rate parameters (k(2), k(3)) was less robust, indicating that information regarding these parameters was harder to recover in the presence of statistical noise and dual-tracer effects. Performance of the dual-tracer FLT(0 min)+FDG(32 min) technique was further evaluated using PET/CT imaging studies in five patients with primary brain tumors where the data from separate scans of each tracer were combined to synthesize dual-tracer scans with known single-tracer components; results demonstrated similar dual-tracer signal recovery performance. We conclude that rapid dual-tracer FLT+FDG tumor imaging is feasible and can provide quantitative tumor imaging measures comparable to those from conventional separate-scan imaging.
منابع مشابه
Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG.
UNLABELLED 3'-Deoxy-3'-(18)F-fluorothymidine ((18)F-FLT) is a recently developed PET tracer to image tumor cell proliferation. We characterized (18)F-FLT PET of brain gliomas and compared (18)F-FLT with (18)F-FDG PET in side-by-side studies of the same patients. METHODS Twenty-five patients with newly diagnosed or previously treated glioma underwent PET with (18)F-FLT and (18)F-FDG on consecu...
متن کاملA multicenter clinical trial on the diagnostic value of dual-tracer PET/CT in pulmonary lesions using 3'-deoxy-3'-18F-fluorothymidine and 18F-FDG.
UNLABELLED Some new radiotracers might add useful information and improve diagnostic confidence of (18)F-FDG imaging in tumors. A multicenter clinical trial was designed to investigate the diagnostic performance of dual-tracer ((18)F-FDG and 3'-deoxy-3'-(18)F-fluorothymidine [(18)F-FLT]) PET/CT in pulmonary nodules. METHODS Fifty-five patients underwent dual-tracer imaging in 6 imaging center...
متن کامل[18F]FLT and [18F]FDG PET for Non-invasive Treatment Monitoring of the Nicotinamide Phosphoribosyltransferase Inhibitor APO866 in Human Xenografts
INTRODUCTION APO866 is a new anti-tumor compound inhibiting nicotinamide phosphoribosyltransferase (NAMPT). APO866 has an anti-tumor effect in several pre-clinical tumor models and is currently in several clinical phase II studies. 3'-deoxy-3'-[18F]fluorothymidine ([18F]FLT) is a tracer used to assess cell proliferation in vivo. The aim of this study was non-invasively to study effect of APO866...
متن کاملImaging bone and soft tissue tumors with the proliferation marker [18F]fluorodeoxythymidine.
PURPOSE We have determined the ability of positron emission tomography (PET) with the thymidine analogue 3'-deoxy-3'[18F]fluorothymidine (FLT) to detect manifestation sites of bone and soft tissue tumors, to assess tumor grading, and to differentiate malignant from benign tumors. MATERIALS AND METHODS In this prospective bicenter trial, FLT-PET was done in 22 patients with established or susp...
متن کاملRapid Multi-Tracer PET Tumor Imaging With F-FDG and Secondary Shorter-Lived Tracers.
Rapid multi-tracer PET, where two to three PET tracers are rapidly scanned with staggered injections, can recover certain imaging measures for each tracer based on differences in tracer kinetics and decay. We previously showed that single-tracer imaging measures can be recovered to a certain extent from rapid dual-tracer (62)Cu - PTSM (blood flow) + (62)Cu - ATSM (hypoxia) tumor imaging. In thi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physics in medicine and biology
دوره 58 3 شماره
صفحات -
تاریخ انتشار 2013